18. November 2017 17:14
Các trang chính
· Trang Nhất
· Diá»…n đàn
· Tạp Chí MathVn
· Bản dịch Kvant
· Blogs
· FAQ
· Liên hệ
· Tìm kiếm
· Liên kết

· ThÆ° viện
Đăng nhập
Tên tài khoản

Mật khẩu



Có phải bạn chưa là thành viên của cộng đồng MathVn?
Nhấp vào đây để đăng ký.

Có phải bạn quên mật khẩu?
Yêu cầu mật khẩu mới ở đây.
Search Articles
Bạn có thể tìm kiếm và tải về trực tiếp các bài báo khoa học bằng cách nhập DOI ở ô tìm kiếm bên dưới. DOI có thể tìm thấy ngay trong trang xuất bản online của bài báo mà bạn muốn tải. Bạn có thể nhập DOI thí dụ sau: 10.1007/BF01192073



Wolfram Alpha
Tính toán trực tuyến với Wolfram Alpha bằng cách nhập từ khóa vào bên dưới


Donation
Cộng đồng MathVn hoạt động với mục đích phi lợi nhuận, tuy nhiên chúng tôi rất cần sự trợ giúp tài chính đề duy trì sự hoạt động của website cũng như ra mắt các ấn bản miễn phí, tổ chức các hoạt động offline... Mọi sự đóng góp dù nhỏ đều là quý báu và chúng tôi chân thành ghi nhận điều đó.



Wikipedia
Bạn có thể tra cứu các thuật ngữ Toán học qua Wikipedia bằng cách nhập từ khóa vào bên dưới



RSS Feeds
Subscribe to our Feeds

Latest Downloads
Latest News
Latest Articles
Latest Threads
Latest Weblinks

Validated Feeds

Trực tuyến
LONGbhkn09:47:06
Vnkvant17:46:06
giangpna98 1 week
pvan1611 1 week
kqh26 1 week
angrypig298 2 weeks
legendarthas 3 weeks
tranthienchuong 3 weeks
Thành viên trực tuyến
· Khách trực tuyến: 1

· Thành viên trực tuyến: 0

· Tổng số thành viên: 2,538
· Thành viên mới nhất: nmhuy942
Bản dịch Kvant
· Đề ra kì này Số 04-2008
· Đề ra kì này Số 06-2006
· Đề ra kì này Số 05-2006
· Đề ra kì này Số 04-2006
· Đề ra kì này Số 03-2006
· Đê ra kì này Số 02-2006
· Đề ra kì này Số 01-2006
· Đề ra kì này Số 06-2002
· Đề ra kì này Số 04-2002
· Đề ra kì này Số 06-2001
Chủ đề diễn đàn
Chủ đề mới nhất
· Đại số...
· Bá»™ sách cá...
· Nhóm xyclic
· Điểm bấ...
· Tính giá»›i h...
· Bất đẳ...
· Korner's constructio...
· An inequality collec...
· Vài bài vá»...
· PhÆ°Æ¡ng trìn...
· L.C.Evans - PDE
· Olympic Sinh viên...
· Olympiad SV МФ...
· Generalization of so...
· Tặng daogiauvan...
· Mùa hè nóng...
· Collected inequality...
· Olympic SV Kiev
· Bất đẳ...
· Tài khoản MA...
· Bài tập vá...
· Chú ý: THÁN...
· Số Pi và nh...
· Chuyển công ...
· Ôn tập mÃ...
· Đăng ký tha...
· PhÆ°Æ¡ng pháp...
· Olympic Sinh viên...
· Olimpiad Toán Ä...
· Problem Of The Month I.
Chủ đề nóng nhất
· Nhờ download... [333]
· Vài bài tá... [85]
· Những Ä‘... [83]
· Problem Of The Mo... [76]
· BV Functions In O... [51]
· Đề thi tu... [47]
· Thông tin vÃ... [40]
· L.C.Evans - PDE [38]
· Các bạn t... [38]
· Problems of Purdu... [36]
· Problem of Washin... [36]
· Ôn tập m... [34]
· Olympic Sinh viÃ... [34]
· Olympic SV Kiev [33]
· Olympic Toán S... [33]
· PT vi phân [32]
· Ôn tập m... [31]
· Tính giá»›... [30]
· Call for papers-K... [30]
· Đóng góp... [30]
· Mùa hè nÃ... [28]
· Tuyển táº... [28]
· Cập nhậ... [28]
· Korner's construc... [27]
· Đăng ký ... [26]
· Nhờ download... [26]
· An inequality col... [25]
· Generalization of... [25]
· PhÆ°Æ¡ng phÃ... [25]
· Bất Ä‘á... [24]
· Má»™t câu ... [24]
· Tìm nghiá»... [24]
· Tích phân hay [23]
· Bài tập v... [22]
· Kì Thi Olympic... [22]
· Olimpiad Toán ... [21]
· Mathematics Magazine [21]
· PhÆ°Æ¡ng trÃ... [21]
· PhÆ°Æ¡ng trÃ... [20]
· Collected inequal... [20]
· Chuyển cô... [20]
· College Mathemati... [20]
· Olympic Sinh viÃ... [19]
· Tặng daogiau... [19]
· Tài khoản... [19]
· Chú ý: THÃ... [19]
· Số Pi và... [19]
· Phép biến... [19]
· Journal Ма... [19]
· The Qualifying Ex... [19]
Khoảng cách các số nguyên tố và Yitang Zhang
Tin tức Toán HọcTranslated by Vnkvant
(dịch theo Thomas Lin, "After Prime Proof, an Unlikely Star Rises", Quanta Magazine April 2, 2015)

Khi còn là cậu bé ở thành Thượng Hải của nước Trung Hoa, Yitang Zhang từng tin rằng ngày nào đó cậu sẽ giải được một vấn đề lớn của Toán học. Vào năm 1964, khi vừa ngang chín tuổi, cậu tìm được một lời giải của định lý Pythagore, mô tả quan hệ giữa độ dài các cạnh của một tam giác vuông. Lên 10 tuổi, cậu lần đầu tiên biết về hai định lý cực kỳ nổi tiếng của lý thuyết số, Định lý cuối cùng của Fermat và giả thuyết Goldbach. Lúc đó cậu còn chưa bao giờ nghe đến giả thuyết của các số nguyên tố sinh đôi, giả thuyết tồn tại hàng thế kỷ, ấy thế mà cậu ta đã bắt đầu học và gắn bó với các số nguyên tố, các số mà được mô tả như là phần tử không thể chia nhỏ thêm được và tạo nên tất cả các số tự nhiên.



Nhưng chả bao lâu sau đó, cuộc Cách mạng Văn hóa phản trí thức nổ ra, những tên "phản động" đóng cửa các trường học và đưa cậu cũng như mẹ cậu về nông thôn để làm ruộng. Do những rắc rối của bố cậu với Đảng Cộng Sản nên Zhang không thể theo học ở một trường phổ thông. Trong cả 10 năm, cậu trở thành người lao động chân tay, nhưng vẫn đọc sách về toán, lịch sử và các môn học khác bất cứ khi nào cậu có thời gian.

Không lâu sau Cách mạng Văn hóa kết thúc, Zhang, chàng trai vừa 23 tuổi, được tuyển vào Đại học Bắc Kinh và trở thành một trong nhưng sinh viên Toán xuất sắc nhất của nước Trung Hoa cải cách. Sau khi hoàn tất bậc thạc sĩ vào năm 29 tuổi, cậu được Giáo sư T. T. Moh tuyển dụng để theo đuổi tấm bằng Tiến sĩ tại Đại học Purdue, Lafayette, Indiana. Nhưng mọi thứ chẳng được như ý, sau khi mất bảy năm để bảo vệ luận án, vào năm 1991 vì không có công bố khoa học nào nên Zhang, vừa tuổi trung niên không thể tìm được một công việc hàn lâm như là một nhà Toán học.

Trong một bộ phim tài liệu của George Csicsery mang tiêu đề "Đếm từ Vô cùng", Zhang đã nói về những khó khăn mà ông gặp phải ở Purdue vào những năm ông làm nghiên cứu sinh. Zhang nói rằng thầy hướng dẫn của ông không thèm viết một bức thư giới thiệu việc làm ông. (Moh thì lại viết rằng Zhang chả yêu cầu cái gì từ ông ta cả). Zhang cũng công nhận rằng do tính hay xấu hổ và quá trầm của ông đã không giúp để xây dựng các mối quan hệ hay làm cho ông được cộng đồng toán học biết tới. Trong suốt thời gian đầu tìm kiếm việc làm, Zhang thỉnh thoảng phại sống trong xe hơi như là nhà, theo lời kể của một người bạn, Jacob Chi, giám đốc âm nhạc của Pueblo Symphony tại Colorado. Vào năm 1992, Zhang bắt đầu công việc tại một tiệm Subway bán bánh sandwich của một người bạn tốt bụng khác. Trong khoảng 7 năm, ông làm những công việc trái nghề cho những người bạn mà ông quen biết.

Vào năm 1999, khi đã 44, cuộc đời Zhang đi vào một bước ngoặc. Một người bạn cũng là một nhà Toán học đã giúp cho cho ông một chân giảng viên Toán tại Đại học New Hampshire. Khi ông không phải dậy những lớp về giải tích cổ điển, nơi mà lũ học trò đặt tên ông là “Tom”, thì ông lại suy nghĩ về lý thuyết số. Vào năm 2009, ông bắt đầu chuyển sự chú ý của mình sang giả thuyết các số nguyên tố sinh đôi, giả thuyết khẳng định rằng tồn tại vô số cặp số nguyên tố cách nhau 2 đơn vị. Thí dụ về cặp số nguyên tố sinh đôi dễ thấy nhất là 5 và 7, 11 và 13, 17 và 19, nhưng chưa hề một ai có thể chứng minh rằng những cặp số như vậy sẽ vẫn luôn tiếp tục được tìm thấy trên đường thẳng số. Một phát biểu yếu hơn, nhưng cũng chưa ai chứng minh được rằng sẽ khoảng trống giữa hai số nguyên tố liên tiếp không thể tiến ra vô cùng, hay khoảng trống giữa hai số nguyên tố liên tiếp có thể bị chặn vô số lần bởi một hằng số tốt nhất nào đó (gọi tắt là chặn của các khoảng trống nguyên tố, giả thuyết các số nguyên tố sinh đôi khẳng định hằng số này là 2)

Vào ngày 17 tháng 4 năm 2013, Zhang một giảng viên 58 tuổi đã gửi bản thảo chứng minh rằng chặn của các khoảng trống nguyên tố bé hơn 70 triệu cho tạp chí Annals of Mathematics, tờ tạp chí dẫn đầu của ngành Toán. Mọi thứ diễn ra một cách mau lẹ sau ba tuần, các trọng tài của bản thảo này đã xác nhận rằng Zhang, một nhà Toán học vô danh, "đã chứng minh một định lý mang tính điểm mốc về sự phân phối của các số nguyên tố"


Yitang Zhang tại buổi gặp gỡ của Hiệp hội Khoa học cấp cao Hoa kỳ tại San Jose, California, vào tháng 2, 2015 (Thomas Lin/Quanta Magazine)


“Chưa bao giờ nghe danh của ông ta. thực sự là chưa là chưa bao giờ,” Andrew Granville, một nhà lý thuyết số tại University of Montreal, nói như vậy trong phim "Đếm từ Vô cùng". Khi Granville nghe nói về kết quả và kỹ thuật mà Zhang đã dùng, ông này phải một câu rằng “Chẳng thể nào mà có một ai đó mà tôi chưa từng nghe danh đã làm được như vậy.”

Trong suốt cả hai năm qua, Zhang đi khắp nơi trên thế giới diễn giảng về chứng minh của mình và ông đã nhận giải Ostrowski, giải Cole, giải Rolf Schock, MacArthur fellowship và cũng nhận được sự chú ý của các tạp chí The New York Times, The New Yorker và hàng loạt hãng truyền thông lớn khác. Zhang nhận được hàng loạt lời mời làm việc và lên chức giáo sư đầy đủ tại Đại học New Hampshire. Vào tháng Hai (2015), tạp chí Quanta đã phỏng vấn Zhang trong buổi gặp gỡ của Hiệp hội Khoa học cấp cao Hoa kỳ tại San Jose, nơi mà ông trình bày về chặn của các khoảng trống nguyên tố.

QUANTA MAGAZINE (Q): Khi nào và làm sao ông nhận ra rằng ông làm Toán tốt.

YITANG ZHANG (Y): Có lẽ là khi tôi lên 9 hoặc là sớm hơn một chút, tôi đã rất có hứng với Toán học. Tôi tìm được một chứng minh của định lý Pythagoras. Chưa ai từng dạy tôi về cái đó cả.

Q: Vậy ông lớn lên ở thành Thượng Hải, Trung Quốc — và sau đó ông không thể tiếp tục học trung học cơ hoặc phổ thông?

Y: Đúng vậy, cũng tại Cách mạng Văn hóa. Vào thời điểm đó người ta quyên luôn về khoa học và giáo dục. Và thay vào đó, tôi phải ở nông thôn và làm ruộng. Khi cuộc cách mạng kết thúc thì tôi đã 21. Tôi đi học ở Peking University khi tôi 23.

Q: Khi ông chưa được vào trường học, ông có tiếp tục tự học Toán? Ông có đọc sách không?

Y: Tôi đã đọc các cuốn sách. Thực ra lúc đó tôi quan tâm đến nhiều thứ. Không chỉ là Toán thôi đâu! Tôi đọc từng cuốn sách mà tôi có thể tìm được, như lịch sử và một số chủ đề khác.

Q: Nền tảng của ông khác với hầu hết các nhà Toán học thành công khác. Ngay cả khi ông đã đến Hoa kỳ và kiếm được tấm bằng tiến sĩ, mọi thứ đã không suôn sẻ. Trong nhiều năm ông phải làm công việc kế toán, làm việc cho bạn bè chẳng có liên quan gì đến một công việc hàn lâm.

Y: Đúng vậy.

Q: Các tổ chức ngành Toán đã không nhận ra một điều là “OK, đây là một người mà chúng ta nên nuôi dưỡng và nâng đỡ”?

Y: Điều này chính xác. Tôi đã không gặp may.

Q: Điều gì có thể làm để xác định được những người (có tài) như ông?

Y: Có lẽ là điều quan trọng hơn đối với người đó là anh ta tự mình làm cho bản thân được mọi người biết đến. Nhưng điều đó đã không thật dễ dàng với tôi. Cá tính của tôi đã ngăn tôi hòa đồng, ngăn tôi là có thể được người khác biết đến, bởi vì có lẽ là tôi quá trầm.

Q: Có nhiều nhà Toán học hay e lệ khác vẫn nhận được giúp đỡ mà họ muốn.

Y: Ngày nay có lẽ điều đó dễ hơn. Nhìn lại trong lịch sử thì Riemann, Abel và nhiều nhà toán học nổi tiếng khác không có một cuộc đời êm ái. Họ đã không may mắn.

Q. Điều gì từ bài toán khoảng trống giữa các số nguyên tố và phân phối số nguyên tố đã hấp dẫn ông?

Y: Những bài toán như vậy rất hấp dẫn với mọi nhà Toán học, tôi nghĩ là bởi vì chúng ta cố giải những vấn đề cốt yết hé lộ bí mật của các số.



Q: Khi nào ông quyết định bài toán nào mà ông sẽ giải quyết, có những tiêu chuẩn nào không? Hẳn là phải có một độ khó nào đó phải không?

Y: Đúng, một độ khó nhất định. Và là một tầm quan trọng với Toán học. Không phải là tôi nói rằng điều này quan trọng mà đó là nó được công nhận là quan trọng với cả cộng đồng toán học

Q: Cách tiếp cận của ông đối với Toán sau hết những gì ông những trả lời với những cuộc phỏng vấn khác là, đó là kiên nhẫn và tập trung?

Y: Không dễ mà nói rằng, “Ồ, tôi thực sự hiểu biết mọi thứ, vì thế tôi chẳng có vấn đề gì.” Bạn cố gắng để khám phá ra các bài toán, tự hỏi bản thân về những bài toán đó. Rồi bạn có thế tìm một phương hướng đúng đắn để giải quyết nó.

Q. Là tiếp tục đặt câu hỏi? Và giữa cho một tâm trí mở?

Y: Đúng rồi. Một tâm trí mở.

Q: Những câu hỏi gì mà ông đã quan tâm hiện tại?

Y: Vẫn trong lãnh vực lý thuyết số, tôi không phải chỉ có một vấn đề để suy nghĩ mà là một vài vấn đề, như là sự phân phối không điểm của hàm zeta hàm L.

Q: Ông đang suy nghĩ về giả thuyết các số nguyên tố sinh đôi — thu nhỏ khoảng trống nguyên tố này về 2?

Y: Đó không phải là một vấn đề dễ dàng. Tôi không tìm được một cách nhất định nào đó để làm nó.

Q: Điều gì có thể giúp công chúng có nhiều quan tâm hơn với Toán học?

Y: Có nhiều bài toán — trong lý thuyết số chẳng hạn — khá là dễ hiểu đối với công chúng. Thậm chí một vài bài toán sâu hơn, nhưng không khó để hiểu ý nghĩa của nó. Điều đó có thể giúp mọi người trở nên quan tâm hơn với Toán học.

Q: Khi ông phác họa một nhà Toán học, ông có lẽ là không nghĩ đến một ai đó đứng trên sân khấu và nhận các giải thưởng. Vậy hình dung của ông về một nhà Toán học là như thế nào?

Y: Trực giác. Cảm nhận của bạn về Toán học. Cái đó có nghĩa là gì? Thật khó mà nói cho người khác hiểu. Đó là thứ thuộc về cá nhân thôi.

Q: Một số giải thưởng lớn trong ngành Toán, đặc biệt là huân chương Fields, trao tặng cho những nhà Toán học trẻ. Ông đã giữa 50 khi ông nghiên cứu khoảng cách giữa các số nguyên tố. Và bây giờ ông đã 60 rồi.

Y: Tôi không quan tâm nhiều đến vấn đề tuổi tác. Tôi không nghĩ đó là một sự khác biệt gì lớn. Tôi vẫn có thể làm bất cứ điều gì tôi thích.

Q: Khi ông còn trẻ, lần đầu tiên mà ông bắt đầu thích toán, ông có tưởng tượng rằng ông sẽ giải quyết được những bài toán lớn như vậy không?

Y: Có. Khi tôi còn rất trẻ, tôi mường tượng ra là sẽ có một ngày tôi giải được một bài toán lớn. Tôi khá tự tin.

Q: Vậy ông không đủ ngạc nhiên khi mà ông đã giải ra bài toán về khoảng cách các số nguyên tố?

Y: Điều mà tôi ngạc nhiên là bản thảo của tôi được công nhận chỉ trong ba tuần. Tôi chưa từng kỳ vọng như thế.

Q: Ông rất bận rộn sau đó, đi đến các trường đại học, phản hồi lại các hãng thông tấn. Hẳn là ông đang trông mong cho một giai đoạn sẽ có ít bài diễn thuyết và phỏng vấn — chỉ tập trung vào bài toán tiếp theo thôi phải không?

Y: Tôi cũng mệt rồi! Tôi ước là tôi có thể tiết kiệm thời gian chứ không phải lãng phí nó quá nhiều để trở thành một ngôi sao.

Q: Vậy ông hi vọng sẽ đath được điều gì trong những thập kỷ tới?

Y: Tôi hi vọng mình có thể giải ra một vài bài toán quan trọng giống như thế.

Hết.

Nguồn:
https://www.quantamagazine.org/20150402-prime-proof-zhang-interview/

Minh Nguyen,
18/03/2016
Bình luận
Chưa có bình luận nào được gửi.
Gửi Bình luận
Xin hãy đăng nhập để gửi bình luận của bạn.
Bình chọn
Bình chọn chỉ khả dụng cho thành viên đã đăng nhập.

Xin hãy đăng nhập hoặc đăng ký thành viên để bình chọn.

Tuyệt! Tuyệt! 100% [4 Bình chọn]
Rất tốt Rất tốt 0% [Không chọn]
Tốt Tốt 0% [Không chọn]
Bình thường Bình thường 0% [Không chọn]
Tệ Tệ 0% [Không chọn]
Bài viết Blog
Vnkvant
» An epsilon of room
luongdinhgiap
» Đêm suy tÆ...
Vnkvant
» Vai trò cá»...
hoadai
» ISI Impact factor...
betadict
» George Box vaÌ...
gshopf
» Vé số d...
fuzzy2015
» Toán hay là...
Vnkvant
» Ai là tiế...
umf
» Mục Ä‘Ã...
mathexy
» Dá»± Ä‘oÃ...
Search E-books
Bạn có thể tìm kiếm và tải về trực tiếp với hơn 1.5 triệu đầu sách điện tử bằng cách nhập từ khóa ở ô tìm kiếm bên dưới. Để yêu cầu tài các liệu khác, bạn phải đăng nhập với tài khoản của diễn đàn và vào đây


Facebook

Bạn có thể theo dõi tin tức từ Cộng đồng MathVn trên Facebook bằng cách Like hoặc nhấp vào biểu tượng bên dưới

Shoutbox
You must login to post a message.

10/06/2016
Grin

10/06/2016
để mình hỏi mấy người bạn chụp giúp xem. Trên mạng có một số mới nhưng số 2 của 2016 thì chưa

10/06/2016
Cùng dịch tạp chí kvant, nhưng em muốn xem các số mới nhất. Ai có thể share các số 2015-2016

08/05/2016
các anh chi nào có đề thi cao học viện toán đợt 1 năm 2016 k ạ?

03/05/2016
http://kvant.mccme
.ru/ Trang này có các số từ 2014 trở về trước. Grin

22/04/2016
Không biết ai có bản gốc số mới nhỉ Grin

22/04/2016
Các anh có thể dịch thêm Đề ra kì này của Kvant được không ạ?Em thấy chuyên mục đó có nhiều bài hay ạ. Smile

22/04/2016
Ok! Hi vọng sớm vận động đc anh em, có thể dịch thêm một số bài viết hay

22/04/2016
Thế thì tuyệt quá ạ. Smile

21/04/2016
Có ai muốn khởi động việc dịch tạp chí kvant lại ko nhỉ?

13/04/2016
Angry

12/04/2016
ai có đề olympic năm nay post lên nhé Grin

08/04/2016
Diễn đàn toán học thì có lâu rồi. Chỉ tiếc là bây giờ nó lung tung quá, nản.

08/04/2016
mọi người biết diễn đàn này chưa diendantoanhoc.net

28/03/2016
chúc mọi người có kỳ nghỉ Easter vui vẻ Grin

24/03/2016
trang này thú vị thật, mình đọc bài toán sandwich suy nghĩ một lúc rồi xem lời giải bằng hình ảnh hóa ra là đơn giản thật, quá thú vị Smile

24/03/2016
Hình như có giới hạn cho số kí tự ở shoutbox. Mình vửa gửi lại.

24/03/2016

24/03/2016
Không vào được prime ơi, bỏ vào thẻ [url] thử.

24/03/2016
Tình cờ vào trang web này. Xem thử video về khái niệm liên tục (đặc biệt là bài toán sandwich) thấy rất thú vị. Mọi người thử xem.

Render time: 0.08 seconds 2,879,587 lượt ghé thăm